Sign In

Communications of the ACM

Communications of the ACM

Polynomial and spline approximation by quadratic programming

The problem of approximation to a given function, or of fitting a given set of data, where the approximating function is required to have certain of its derivatives of specified sign over the whole range of approximation, is studied. Two approaches are presented, in each of which quadratic programming is used to provide both the constraints on the derivatives and the selection of the function which yields the best fit. The first is a modified Berstein polynomial scheme, and the second is a spline fit.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.