Sign In

Communications of the ACM

Communications of the ACM

Automatic error analysis for determining precision

The problem considered is that of evaluating a rational expression to within any desired tolerance on a computer which performs variable-precision floating-point arithmetic operations. For example, the expression might be &pgr;/(&pgr; + 1/2 - e) √2), which is rational in the data &pgr;, e, √2. An automatic error analysis technique is given for determining, directly from the results of a trial low-precision interval arithmetic calculation, just how much precision and data accuracy are required to achieve a desired final accuracy. The techniques given generalize easily to the evaluation of many nonrational expressions.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account