Sign In

Communications of the ACM

Communications of the ACM

Memory occupancy patterns in garbage collection systems

Some programming languages and computer systems use dynamic memory allocation with garbage collection. It would be useful to understand how the utilization of memory depends on the stochastic parameters describing the size and life distributions of the cells. We consider a class of dynamic storage allocation systems which use a first-fit strategy to allocate cells and perform noncompacting garbage collections to recover free memory space when memory becomes fully occupied. A formula is derived for the expected number of holes (available cells) in memory immediately following a garbage collection which specializes to an analogue of Knuth's 'Fifty Percent' rule for nongarbage-collection systems. Simulations confirm the rule for exponentially distributed cell lifetimes. Other lifetime distributions are discussed. The memory-size requirements for noncompacting garbage collection are also analyzed.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account