acm-header
Sign In

Communications of the ACM

Communications of the ACM

A specification language to assist in analysis of discrete event simulation models


Effective development environments for discrete event simulation models should reduce development costs and improve model performance. A model specification language used in a model development environment is defined. This approach is intended to reduce modeling costs by interposing an intermediate form between a conceptual model (the model as it exists in the mind of the modeler) and an executable representation of that model. As a model specification is constructed, the incomplete specification can be analyzed to detect some types of errors and to provide some types of model documentation. The primitives used in this specification language, called a condition specification (CS), are carefully defined. A specification for the classical patrolling repairman model is used to illustrate this language. Some possible diagnostics and some untestable model specification properties, based on such a representation, are summarized.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.