Sign In

Communications of the ACM

Research highlights

Technical Perspective: The Scalability of CertiKOS

For moderate-size sequential programs, formal verification works—we can build a formal machine-checkable proof that a program is correct, with respect to a formal specification in logic. Machine-checked formal verifications of functional correctness have already been demonstrated for operating-system microkernels, optimizing compilers, cryptographic primitives and protocols, and so on.

But suppose we want to verify a high-performance hypervisor kernel programmed in C, that runs on a real (x86) machine, that is capable of booting up Linux in each of its (hypervisor) guest partitions? Real machines these days are multicore—the hypervisor should provide multicore partitions that can host multicore guests, all protected from each other, but interacting via shared memory synchronized by locks. Furthermore, the operating system itself should be multicore, with fine-grain synchronization—we do not want one global lock guarding all the system calls by all the cores and threads.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.