acm-header
Sign In

Communications of the ACM

Review articles

Toward Model-Driven Sustainability Evaluation


glass Earth in human hands

Credit: Rangizzz / Shutterstock.com

Sustainability—the capacity to endure—has emerged as a concern of central relevance for society. However, the nature of sustainability is distinct from other concerns addressed by computing research, such as automation, self-adaptation, or intelligent systems. It demands the consideration of environmental resources, economic prosperity, individual well being, social welfare, and the evolvability of technical systems.7 Thus, it requires a focus not just on productivity, effectiveness, and efficiency, but also the consideration of longer-term, cumulative, and systemic effects of technology interventions, as well as lateral side effects not foreseen at the time of implementation. Furthermore, sustainability includes normative elements and encompasses multi-disciplinary aspects and potentially diverging views. As a wicked problem (see the sidebar "Wicked Problems"), it challenges business-as-usual in many areas of engineering and computing research.

Back to Top

Key Insights

ins01.gif

The complexity of these integrated techno-socioeconomic systems and their interactions with the natural environment is driving attention in several areas. These areas include means for understanding the emergent dynamics of these interactions and supporting better decision making through predictive simulation and system adaptation. At the heart of this is the notion of a model, an abstraction created for a purpose. Models are used throughout sustainability research (for example, for hydrology or pollution analysis) as well as software engineering (for example, for automated code generation). Models have a long history in research related to sustainability. The Global Modeling (GM) initiatives that started in 1960s and 1970s developed and used large mathematical dynamic global models to simulate large portions of the entire world.13 GM in general was applied to human decision-making in domains such as economics, policy, defense, minimization of poverty, and climate change. The goal of GM is to offer a prediction of the future state of the world, or parts of it, using (perhaps heavily) mathematical equations and assumptions. Mathematical models offer a framework of stability that is useful in domains such as climate modeling, but it may not be the same in the case of social sciences domains.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.