The following SkyCore paper addresses an exciting use case for Unmanned Aerial Vehicles (UAVs) or drones in which UAVs can act as mobile base stations for the cellular network, flying to areas in the cellular network in order to improve wireless connectivity in those areas. This adaptive capability to patch the network capacity on demand would be useful to address hotspots, such as at sporting venues or other temporary events that have insufficient network capacity, and/or emergency scenarios when parts of the cellular network are incapacitated. The paper uses the Long-Term Evolution (LTE) standard as a case study for providing on-demand adaptive cellular connectivity via UAVs.
The challenge of this work is how to adapt the existing LTE standard to support the concept of UAV-based mobile base stations, especially in the presence of multiple UAVs. In current cellular networks, base stations employ a Radio Access Network (RAN) to communicate with clients, for example, cell phones. Packets are then routed over a high-speed wired network of gateways comprising the Evolved Packet Core (EPC) network to the Internet. The paper observes that current cellular operators typically deploy UAV base stations with an architecture in which the UAVs contain the RAN while the EPC is ground-based. In order to connect the UAV-based RAN to the EPC, the UAV is either tethered via wire to the UAV base stations (limiting their mobility and range) or connected wirelessly to the UAV, exposing EPC communication to the unreliability of the wireless link.
No entries found