The vision of tiny, flying robotic insects has captured the imagination of researchers in many disciplines. Some have sought to create entirely synthetic robotic creatures while others have chosen to weave and deeply enmesh biological sensing and actuation with electronic computation and controls. The following paper by Iyer et al. takes a different approach. It neatly separates the problems of locomotion, solved using existing biology, and the problems of sensing, localization, and communications, solved using commercial microelectronics and new algorithms, packaged into a tiny payload. These two halves—one biological and one electronic—are then simply glued together to realize a cyborg bumblebee with a mind of its own carrying sensors on our behalf.
Realizing this exciting vision requires solving myriad research and engineering problems, but perhaps none more daunting than how to localize a small and fast-moving bumblebee at a range of tens of meters. The problem is particularly challenging because of the severe and unforgiving size, weight, and power (SWaP) constraints on payload capacity. A key contribution of the accompanying work is a novel method for low-power, mid-range, outdoor localization that estimates the angle-of-departure of signals from several multi-antenna access points in clear line-of-sight settings, as might be typical on farms and fields.
No entries found