Sign In

Communications of the ACM

Research highlights

Technical Perspective: Why Don't Today's Deep Nets Overfit to Their Training Data?

The following article by Zhang et al. is well-known for having highlighted that widespread success of deep learning in artificial intelligence brings with it a fundamental new theoretical challenge, specifically: Why don't today's deep nets overfit to training data? This question has come to animate the theory of deep learning.

Let's understand this question in context of supervised learning, where the machine's goal is to learn to provide labels to inputs (for example, learn to label cat pictures with "1" and dog pictures with "0"). Deep learning solves this task by training a net on a suitably large training set of images that have been labeled correctly by humans. The parameters of the net are randomly initialized and thereafter adjusted in many stages via the simplest algorithm imaginable: gradient descent on the current difference between desired output and actual output.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.