Sign In

Communications of the ACM

Research highlights

Technical Perspective: The Power of Low-Power GPS Receivers for Nanosats

Ncube-2 cubesat

Credit: Wikipedia

Technical advancements in embedded systems, sensing technology, and an understanding of the Earth's atmosphere have allowed us to deploy satellites for various applications. A more recent phenomenon is the use of low-Earth (<2,000km from Earth) and medium-Earth (between 2,000km and 35,000km from Earth) orbits to deploy smaller satellites called nanosats to perform applications such as surveillance, mapping, estimating sea levels and areas of forests and lakes. Most of these satellites use GPS to localize themselves. A unique challenge at the scale of a nanosat is that the size, weight, and energy required to run a typical GPS receiver might be more than what is affordable for long-term operation.

The work explored in the following paper focuses on the energy consumption of a typical GPS receiver and its operational challenges in a nanosat setting. The challenges include: power draw of a typical GPS receiver could be as high as 20% of overall power consumption; high-speed travel of nanosatellites (~7.8km/s) and relative speed to the GPS satellites (which themselves travel at 3.8km/s) makes getting a fix with a GPS satellite very challenging with high Doppler shift; lack of attitude control (typical of low power satellites) results in loss of GPS signal and corresponding loss in a fix; and, small delays result in large error requiring precise computation at low power.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.