Sign In

Communications of the ACM

Review Articles

On the Implicit Bias in Deep-Learning Algorithms

red ball embedded in a nest of patterned lines, illustration

Credit: Shutterstock

Deep learning has been highly successful in recent years and has led to dramatic improvements in multiple domains. Deep-learning algorithms often generalize quite well in practice, namely, given access to labeled training data, they return neural networks that correctly label unobserved test data. However, despite much research, our theoretical understanding of generalization in deep learning is still limited.

Back to Top

Key Insights


Neural networks used in practice often have far more learnable parameters than training examples. In such overparameterized settings, one might expect overfitting to occur, that is, the learned network might perform well on the training dataset and perform poorly on test data. Indeed, in overparameterized settings, there are many solutions that perform well on the training data, but most of them do not generalize well. Surprisingly, it seems that gradient-based deep-learning algorithmsa prefer the solutions that generalize well.40


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account